Skip to Content
DocumentationCreating FiguresPlotting Score Distribution

Plotting Score Distribution

from pyXLMS import __version__ print(f"Installed pyXLMS version: {__version__}")
βœ“
Installed pyXLMS version: 1.3.0
from pyXLMS import parser from pyXLMS import plotting

All plotting functionality is available via the plotting submodule. We also import the parser submodule here for reading result files.

parser_result = parser.read( "../../data/ms_annika/XLpeplib_Beveridge_QEx-HFX_DSS_R1.pdResult", engine="MS Annika", crosslinker="DSS", )
βœ“
Reading MS Annika CSMs...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 826/826 [00:00<00:00, 11471.12it/s] Reading MS Annika crosslinks...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 300/300 [00:00<00:00, 18169.48it/s]

We read crosslink-spectrum-matches and crosslinks using the generic parserΒ  from a single .pdResult file.

fig, ax = plotting.plot_score_distribution( parser_result["crosslink-spectrum-matches"], figsize=(7.0, 4.0), filename_prefix="score_dist_csms", )

png

We can plot the score distribution for our crosslink-spectrum-matches by passing them as the first argument.

Important

Please note that plotting a score distribution is only possible if all data have an associated score and target-decoy labels, otherwise the function will raise an exception!

The default figure size is 16 by 9 inches and does not need to be set explicitly, we just used a smaller one here for demonstration purposes. The filename_prefix parameter is also optional, if it is given the plot is saved four times: once without the title in .png and .svg format, and once with the title in .png and .svg format.

fig, ax = plotting.plot_score_distribution( parser_result["crosslinks"], bins=50, title="Target-Target and Decoy-Decoy Score Distribution", figsize=(7.0, 4.0), )

png

We can do the same plot for our crosslinks by passing them as the first argument instead. As a side note, you can see here that MS Annika only uses Decoy-Decoy labels for all decoy crosslinks, not matter if they are Decoy-Decoy or Target-Decoy matches. This time we also specify bins=50 to control the number of steps in our histogram and additionally specify a title for our plot via the title parameter. Since we did not specify a filename_prefix the plot is not saved to disk. There are also other parameters that can be set to tune your plot like density and colors, you can read more about all the possible parameters here: docs.

Last updated on